skip to main content


Search for: All records

Creators/Authors contains: "Hirota, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-scale network-cloud ecosystems are fundamental infrastructures to support future 5G/6G services, and their resilience is a primary societal concern for the years to come. Differently from a single-entity ecosystem (in which one entity owns the whole infrastructure), in multi-entity ecosystems (in which the networks and datacenters are owned by different entities) cooperation among such different entities is crucial to achieve resilience against large-scale failures. Such cooperation is challenging since diffident entities may not disclose confidential information, e.g., detailed resource availability. To enhance the resilience of multi-entity ecosystems, carriers are important as all the entities rely on carriers’ communication services. Thus, in this study we investigate how to perform carrier cooperative recovery in case of large-scale failures/disasters. We propose a two-stage cooperative recovery planning by incorporating a coordinated scheduling for swift recovery. Through preliminary numerical evaluation, we confirm the potential benefit of carrier cooperation in terms of both recovery time and recovery cost/burden reduction. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. We investigate the problem of future disaster-resilient optical network-cloud ecosystems. We introduce our solutions considering openness/disaggregation and cooperation for single- and multi-entity network-cloud ecosystems, respectively. 
    more » « less
  3. The high reliability required by many future-generation network services can be enforced by proper resource assignments by means of logical partitions, i.e., network slices, applied in optical metro-aggregation networks. Different strategies can be applied to deploy the virtual network functions (VNFs) composing the slices over physical nodes, while providing different levels of resource isolation (among slices) and protection against failures, based on several available techniques. Considering that, in optical metro-aggregation networks, protection can be ensured at different layers, and the slice protection with traffic grooming calls for evolved multilayer protection approaches. In this paper, we investigate the problem of reliable slicing with protection at the lightpath layer for different levels of slice isolation and different VNF deployment strategies. We model the problem through an integer linear program (ILP), and we devise a heuristic for joint optimization of VNF placement and ligthpath selection. The heuristic maps nodes and links over the physical network in a coordinated manner and provides an effective placement of radio access network functions and the routing and wavelength assignment for the optical layer. The effectiveness of the proposed heuristic is validated by comparison with the optimal solution provided by the ILP. Our illustrative numerical results compare the impact of different levels of isolation, showing that higher levels of network and VNF isolation are characterized by higher costs in terms of optical and computation resources.

     
    more » « less